Deep Residual Learning

MSRA @ ILSVRC & COCO 2015 competitions

Kaiming He
with Xiangyu Zhang, Shaoqing Ren, Jifeng Dai, & Jian Sun
Microsoft Research Asia (MSRA)
MSRA @ ILSVRC & COCO 2015 Competitions

• **1st places in all five main tracks**
 - ImageNet Classification: “*Ultra-deep*” (quote Yann) **152-layer nets**
 - ImageNet Detection: **16%** better than 2nd
 - ImageNet Localization: **27%** better than 2nd
 - COCO Detection: **11%** better than 2nd
 - COCO Segmentation: **12%** better than 2nd

*improvements are relative numbers

Revolution of Depth

ImageNet Classification top-5 error (%)

Revolution of Depth

Engines of visual recognition

<table>
<thead>
<tr>
<th>Model</th>
<th>Layer Depth</th>
<th>mAP (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOG, DPM</td>
<td>shallow</td>
<td>34</td>
</tr>
<tr>
<td>AlexNet (RCNN)</td>
<td>8 layers</td>
<td>58</td>
</tr>
<tr>
<td>VGG (RCNN)</td>
<td>16 layers</td>
<td>66</td>
</tr>
<tr>
<td>ResNet (Faster RCNN)*</td>
<td>101 layers</td>
<td>86</td>
</tr>
</tbody>
</table>

PASCAL VOC 2007 **Object Detection** mAP (%)

* w/ other improvements & more data

Revolution of Depth

AlexNet, 8 layers (ILSVRC 2012)

11x11 conv, 96, /4, pool/2

5x5 conv, 256, pool/2

3x3 conv, 384

3x3 conv, 384

3x3 conv, 256, pool/2

fc, 4096

fc, 4096

fc, 1000

Revolution of Depth

AlexNet, 8 layers (ILSVRC 2012)

VGG, 19 layers (ILSVRC 2014)

GoogleNet, 22 layers (ILSVRC 2014)

Revolution of Depth

AlexNet, 8 layers (ILSVRC 2012)

VGG, 19 layers (ILSVRC 2014)

ResNet, 152 layers (ILSVRC 2015)

Revolution of Depth

ResNet, 152 layers

Is learning better networks as simple as stacking more layers?

Simply stacking layers?

- *Plain* nets: stacking 3x3 conv layers...
- 56-layer net has **higher training error** and test error than 20-layer net

Simply stacking layers?

CIFAR-10

- 56-layer
- 44-layer
- 32-layer
- 20-layer

solid: test/val

dashed: train

ImageNet-1000

- 34-layer
- 18-layer

• “Overly deep” plain nets have higher training error
• A general phenomenon, observed in many datasets

A shallower model (18 layers)

A deeper counterpart (34 layers)

- A deeper model should not have higher training error
- A solution by construction:
 - original layers: copied from a learned shallower model
 - extra layers: set as identity
 - at least the same training error
- Optimization difficulties: solvers cannot find the solution when going deeper...

Deep Residual Learning

- Plain net

\[x \rightarrow \text{weight layer} \rightarrow \text{relu} \rightarrow \text{weight layer} \rightarrow \text{relu} \rightarrow H(x) \]

\(H(x) \) is any desired mapping, hope the 2 weight layers fit \(H(x) \)
Deep Residual Learning

• **Residual net**

\[H(x) \text{ is any desired mapping, hope the 2 weight layers fit } H(x) \]

\[F(x) \text{ hope the 2 weight layers fit } F(x) \]

let \(H(x) = F(x) + x \)

\[H(x) = F(x) + x \]
Deep Residual Learning

- $F(x)$ is a residual mapping w.r.t. identity

If identity were optimal, easy to set weights as 0

If optimal mapping is closer to identity, easier to find small fluctuations

$H(x) = F(x) + x$
Related Works – Residual Representations

• **VLAD & Fisher Vector** [Jegou et al 2010], [Perronnin et al 2007]
 • Encoding residual vectors; powerful shallower representations.

• **Product Quantization (IVF-ADC)** [Jegou et al 2011]
 • Quantizing residual vectors; efficient nearest-neighbor search.

• **MultiGrid & Hierarchical Precondition** [Briggs, et al 2000], [Szeliski 1990, 2006]
 • Solving residual sub-problems; efficient PDE solvers.
Network “Design”

• Keep it simple

• Our basic design (VGG-style)
 • all 3x3 conv (almost)
 • spatial size /2 => # filters x2
 • Simple design; just deep!

• Other remarks:
 • no max pooling (almost)
 • no hidden fc
 • no dropout

Training

• All plain/residual nets are trained from scratch

• All plain/residual nets use Batch Normalization

• Standard hyper-parameters & augmentation
CIFAR-10 experiments

- Deep ResNets can be trained without difficulties
- Deeper ResNets have **lower training error**, and also lower test error

• Deep ResNets can be trained without difficulties
• Deeper ResNets have **lower training error**, and also lower test error
ImageNet experiments

- A practical design of going deeper

![Diagram of ImageNet experiments](image)

ImageNet experiments

- Deeper ResNets have lower error

<table>
<thead>
<tr>
<th>Model</th>
<th>10-crop testing, top-5 val error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResNet-152</td>
<td>5.7</td>
</tr>
<tr>
<td>ResNet-101</td>
<td>6.1</td>
</tr>
<tr>
<td>ResNet-50</td>
<td>6.7</td>
</tr>
<tr>
<td>ResNet-34</td>
<td>7.4</td>
</tr>
</tbody>
</table>

This model has lower time complexity than VGG-16/19

ImageNet experiments

ILSVRC'15 ResNet 8 layers
ILSVRC'14 GoogleNet 6.7
ILSVRC'14 VGG 7.3
ILSVRC'13 8 layers 11.7
ILSVRC'12 AlexNet 8 layers 16.4
ILSVRC'11 shallow 25.8
ILSVRC'10 28.2

Just classification?

A treasure from ImageNet is on **learning features**.
“Features matter.” (quote [Girshick et al. 2014], the R-CNN paper)

<table>
<thead>
<tr>
<th>task</th>
<th>2nd-place winner</th>
<th>MSRA</th>
<th>margin (relative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ImageNet Localization (top-5 error)</td>
<td>12.0</td>
<td>9.0</td>
<td>27%</td>
</tr>
<tr>
<td>ImageNet Detection (mAP@.5)</td>
<td>53.6 absolute 8.5% better!</td>
<td>62.1</td>
<td>16%</td>
</tr>
<tr>
<td>COCO Detection (mAP@.5:.95)</td>
<td>33.5</td>
<td>37.3</td>
<td>11%</td>
</tr>
<tr>
<td>COCO Segmentation (mAP@.5:.95)</td>
<td>25.1</td>
<td>28.2</td>
<td>12%</td>
</tr>
</tbody>
</table>

- Our results are all based on ResNet-101
- Our features are well transferrable

Object Detection (brief)

• Simply “Faster R-CNN + ResNet”

<table>
<thead>
<tr>
<th>Faster R-CNN baseline</th>
<th>mAP@.5</th>
<th>mAP@.5:.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGG-16</td>
<td>41.5</td>
<td>21.5</td>
</tr>
<tr>
<td>ResNet-101</td>
<td>48.4</td>
<td>27.2</td>
</tr>
</tbody>
</table>

COCO detection results
(ResNet has 28% relative gain)

Object Detection (brief)

- **RPN learns** proposals by extremely deep nets
 - We use **only 300 proposals** (no SS/EB/MCG!)

- **Add what is just missing in Faster R-CNN...**
 - Iterative localization
 - Context modeling
 - Multi-scale testing

- All are based on CNN features; all are end-to-end (train and/or inference)

- All benefit **more from deeper** features – cumulative gains!

Our results on COCO – too many objects, let’s check carefully!

Instance Segmentation (brief)

- Solely CNN-based ("features matter")
- Differentiable RoI warping layer (w.r.t box coord.)
- Multi-task cascades, exact end-to-end training

*the original image is from the COCO dataset
Conclusions

• Deeper is still better

• “Features matter”!

• Faster R-CNN is just amazing