Optimized Product Quantization

Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun

MSRA
Introduction

- Compact Coding for ANN Search
 - Memory
 - 128-d float: 512 bytes → 16 bytes
 - 1 billion items: 512 GB → 16 GB
 - Time
 - Computation: x10-x100 faster
 - Transmission (disk/web): x30 faster
Background

- Vector Quantization (VQ)

\[x \rightarrow c_i \rightarrow i(x) \]

- nearest codeword
- code stored

Number of codewords: \(K \)

Code length: \(B = \log_2 K \)
Background

• VQ for ANN Search

\[d(x, y) \approx d(c_i, c_j) \triangleq lut(i, j) \]
Background

• K-means

$$\min_c \sum_x \|x - c_i(x)\|^2$$ (distortion)

😊

• Minimal distortion

😊

• Intractable look-up: $K = 2^B$
Background

- **Product Quantization (PQ)** [PAMI 2011]

\[
\min_{C_1, \ldots, C_M} \sum_x \| x - c_i(x) \|^2
\]

s.t. \(c \in C_1 \times C_2 \times \cdots \times C_M \)

- Huge codebook: \(K = k^M \)
- Tractable: \(M \) \(k \)-by-\(k \) tables
- Sensitive to projection
Background

• Iterative Quantization (ITQ) [CVPR 2011]

\[
\min_R \sum_x \| x - c_i(x) \|^2
\]

s.t. \(Rc \in \{-1,1\}^D, R^T R = I \)

😊

• Optimized wrt \(R \)

😊

• 1-d subspace

😊

• \(k = 2 \) only

😊

• no look-up
Our method

• Optimized Product Quantization (OPQ) [CVPR 2013]

\[
\min_{R,C_1,\ldots,C_M} \sum_{x} \|x - c_i(x)\|^2
\]

s.t. \(Rc \in C^1 \times C^2 \ldots \times C^M, R^T R = I \)

😊
• Huge codebook: \(K = k^M \)
• Tractable: \(M \) \(k \)-by-\(k \) tables
• High-dim subspace
• \(k \geq 2 \)
• Optimize wrt \(R \)
Relations

\[
\min_{C^1, \ldots, C^M} \sum_{x} \|x - c(x)\|^2
\]

s.t. \(c \in C^1 \times C^2 \ldots \times C^M \)

OPQ vs. PO

\[
\min_{R} \sum_{x} \|x - c(x)\|^2
\]

s.t. \(Rc \in \{-1,1\}^D \)

OPQ vs. ITQ

\[
\min_{R, C^1, \ldots, C^M} \sum_{x} \|x - c(x)\|^2
\]

s.t. \(Rc \in C^1 \times C^2 \ldots \times C^M \)

Challenges coupled \(R \) and \(C^1, \ldots, C^M \)
Solutions

• Challenges - coupled R and C^1, \ldots, C^M
• Solution I
 – decoupling
 – fix R solve C^1, \ldots, C^M
 – fix C^1, \ldots, C^M solve R
• Solution II
 – lower bound: involves R only
 – minimize lower bound w.r.t R
Solution I

• Step 1: fix R, solve for $C^1, ..., C^M$

$$
\min_{C^1, \ldots, C^M} \sum_x \| \hat{x} - \hat{c}_{i(x)} \|^2
$$

s.t. \(\hat{c} \in C^1 \times C^2 \ldots \times C^M \)

with $\hat{x} = Rx$, and $\hat{c} = Rc$

Standard PQ
in a projected space
Solution I

• Step 2: fix C^1, \ldots, C^M, solve for R

$$\min_R \sum_x \|Rx - \hat{c}_i(x)\|^2$$

s.t. $\hat{c} \in C^1 \times C^2 \ldots \times C^M$, $R^TR = I$

Rotate codewords without changing their relative positions
Solution I

• Step 2: fix C^1, \ldots, C^M, solve for R

$$\min_R \|RX - Y\|_F^2$$

s.t. $R^TR = I$

- Let $X = \{x\}, Y = \{y\}, y = \hat{c}_i(x)$
- $R = VU^T$, $[U, V] = \text{svd}(XY^T)$
Solution I

• Initialize
• Repeat
 – Fix R, solve:
 $$\min_{C_1, \ldots, C_M} \sum_x \|\hat{x} - \hat{c}_i(x)\|^2$$ (classical PQ)
 – Fix C_1, \ldots, C_M, solve:
 $$\min_R \|RX - Y\|_F^2$$ (classical ITQ)
• Until convergence
Solution II

• Decoupling
 – lower bound: involves R only
 – minimize lower bound w.r.t R

• Assumes Gaussian distribution
 – analytical forms
 – theoretical guarantees
 – simple, non-iterative
Solution II

• Assumes $x \sim N(0, \Sigma)$
• $\hat{x} = Rx \sim N(0, \hat{\Sigma})$, with $\hat{\Sigma} = R\Sigma R^T$
• Decompose $\hat{x} = (\hat{x}^1, \hat{x}^2, ..., \hat{x}^M)$ into M subspaces

$$\hat{x}^m \sim N(0, \hat{\Sigma}_{mm})$$

$$\hat{\Sigma} = \begin{pmatrix}
\hat{\Sigma}_{11} & \cdots & \hat{\Sigma}_{1M} \\
\vdots & \ddots & \vdots \\
\hat{\Sigma}_{M1} & \cdots & \hat{\Sigma}_{MM}
\end{pmatrix}$$
Solution II

• Rate distortion theory for $\hat{x}^m \sim N(0, \hat{\Sigma}_{mm})$

\[E^m \geq k^{-2} \frac{\frac{M}{D} D}{M} |\hat{\Sigma}_{mm}|^{\frac{M}{D}} \]

 – Nearly achieved: k-means

• PQ distortion for $\hat{x} \sim N(0, \hat{\Sigma})$

\[E \geq k^{-2} \frac{\frac{M}{D} D}{M} \sum_{m=1}^{M} |\hat{\Sigma}_{mm}|^{\frac{M}{D}} \]

• Optimize lower bound

\[\min_{R} \sum_{m=1}^{M} |\hat{\Sigma}_{mm}|^{\frac{M}{D}} \]

s.t. $R^T R = I$
Solution II

• Optimization - achieve the lower bound of the lower bound

\[
\min_R \sum_{m=1}^M |\hat{\Sigma}_{mm}| \geq \sum |\hat{\Sigma}_{mm}| \geq M \prod |\hat{\Sigma}_{mm}| \geq M |\hat{\Sigma}| \equiv M |\Sigma|^{-1}
\]

AM-GM inequality Fischer inequality
Solution II

- Optimization - achieve the lower bound of the lower bound

\[
\min_R \sum_{m=1}^M |\hat{\Sigma}_{mm}|^{\frac{M}{D}} \quad \text{s.t.} \quad R^T R = I
\]

\[
\sum |\hat{\Sigma}_{mm}|^{\frac{M}{D}} \geq M \prod |\hat{\Sigma}_{mm}|^{\frac{1}{D}} = M |\hat{\Sigma}|^{\frac{1}{D}} \equiv M |\Sigma|^{\frac{1}{D}}
\]

\[
\begin{array}{ccccc}
+ & + & \geq & + & \times \\
\times & \times & = & \times & \times \\
\times & \times & = & \times & \times \\
\end{array}
\]

Independent
Solution II

- Optimization - achieve the lower bound of the lower bound

\[
\min_R \sum_{m=1}^M |\hat{\Sigma}_{mm}|^{M/D} \quad \text{s.t.} \quad R^T R = I
\]

\[
\sum |\hat{\Sigma}_{mm}|^{M/D} = M \prod |\hat{\Sigma}_{mm}|^{1/D} = M |\hat{\Sigma}|^{1/D} \equiv M |\Sigma|^{1/D}
\]
Solution II

- Algorithm
 - *independent*: PCA
 - *balanced*:
 \[
 |\hat{\Sigma}_{11}| = \cdots = |\hat{\Sigma}_{mm}| = \cdots = |\hat{\Sigma}_{MM}|
 \]
 - \(|\hat{\Sigma}_{mm}| = \prod \{ \text{eigenvalues of } \hat{\Sigma}_{mm} \} \)
 - Greedy allocation:
 - Sort the eigenvalues of \(\Sigma \)
 - Prepare \(M \) buckets
 - Allocate the largest eigenvalue to the bucket having smallest product
Verification

- 64-d Gaussian, descending eigenvalues, 4 subspaces

\[\hat{\Sigma} \]

\[R \]

- not rotated
- random order
- random rotation
- forced balance
- solution I
- solution II

independent

- Yes
- Yes
- No
- No
- Yes
- Yes

balanced

- No
- almost
- almost
- Yes
- Yes
- Yes

distortion

- Yes
- Yes
- Yes
- Yes
Solution I vs. II

• I – non-parametric
 – Better fits non-Gaussian
 – Iterative (offline)
 – Needs init (e.g. by II)

• II – parametric
 – Guarantees for Gaussian
 – Solid theories
 – Non-iterative
 – Less well for non-Gaussian

• Best practice – solution I + solution II (initialize)
Experiments

• 1 million GIST, 100 NNs, exhaustive ranking
Experiments

• 1 million SIFT, 100 NNs, exhaustive ranking
Experiments

- 1 billion SIFT, 1 NNs, inverted indexing + re-ranking
 - Build inverted indexing via PQ [Babenko, CVPR 2012]
 - Re-rank short lists via PQ [Jegou, PAMI 2011]
 - We optimize both

<table>
<thead>
<tr>
<th></th>
<th>short list length</th>
<th>Recall@100</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>[CVPR 2012]</td>
<td>10,000</td>
<td>74.8</td>
<td>7ms</td>
</tr>
<tr>
<td>Ours</td>
<td>10,000</td>
<td>79.4</td>
<td>7ms</td>
</tr>
<tr>
<td>[CVPR 2012]</td>
<td>100,000</td>
<td>96.0</td>
<td>49ms</td>
</tr>
<tr>
<td>Ours</td>
<td>100,000</td>
<td>97.3</td>
<td>49ms</td>
</tr>
</tbody>
</table>
Experiments

- **Image retrieval**
 - feature: VLAD [Jegou, PAMI 2011]
 - dataset: Holiday [Jegou, PAMI 2011]
 - ground truth: semantic

<table>
<thead>
<tr>
<th>memory / image</th>
<th>8 bytes</th>
<th>16 bytes</th>
<th>32 bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>mAP (PQ_{RR})</td>
<td>38.1</td>
<td>47.9</td>
<td>53.0</td>
</tr>
<tr>
<td>mAP (OPQ)</td>
<td>47.7</td>
<td>52.2</td>
<td>54.3</td>
</tr>
</tbody>
</table>
Conclusion

- Excellent performance for ANN
- Solid theories
- Widely applicable